
MOTE-VIEW: A Sensor Network Monitoring and Management Tool

Martin Turon
Crossbow Technology, Inc.

4145 N. First Street
San Jose, CA 95134 USA

mturon@xbow.com

Abstract

This paper presents a scalable software framework for
managing, monitoring, and visualizing sensor network
deployments called MOTE-VIEW. In this paper, we
conduct a comprehensive review of typical problems
encountered when deploying and administering
wireless sensor networks. Then we address these issues
by outlining a monitoring tool architecture using an
extensible set of user interface components specifically
targeted towards improving manageability and easing
deployment of wireless sensor networks. We describe
specific visualization modules for intuitively
characterizing data represented in instantaneous, time
span, and spatial form. Next, we will analyze and
optimize the database requirements of the proposed
visualization modules for performance. Finally, we
describe a mechanism for analyzing the health of the
individual nodes and the network as a whole.

1. Introduction

Wireless sensor networks are a revolutionary,
enabling technology, making possible for the first time
many novel applications in the fields of environmental
monitoring, industrial control, object tracking, and
security. Compared to previous methods, the level of
resolution and detail that can be gleaned from scattering
a large set of tiny, low-power, sensing devices
throughout a region is staggering. Despite the exciting
possibilities of sensor networks, however, the practical
administration of such systems presents clear
challenges:

1. Data volume: The sheer volume of data
generated by sensor networks can be
tremendous, particularly as the sample rate and
number of nodes is increased. Even if the
amount of sensor data collected is constrained
to the bandwidth limitations of the wireless
network, real-time requests for the data can
overwhelm the server at the base station if the
database queries are not properly designed.

2. Health monitoring: Each mote, an individual

data collection point, is both exposed to the
harsh conditions of the environment that
surrounds it [1], and limited by the aggressive
requirements of maintaining low-power
operation to preserve battery life [2]. The
network as a whole is designed to withstand
the inevitable failure of particular motes [3],
but the fragile nature of each mote makes
managing the dynamics of network
reconfiguration and health evaluation difficult
problems.

3. Information visualization: Presenting and

interpreting the voluminous data that are
collected presents classic challenges in
information visualization.

Therefore, we formulate a framework to directly

address issues with managing large sets of sensor data
generated by wireless sensor networks. This graphical
user interface tool, called MOTE-VIEW, is designed to
simplify, from the perspective of the end user,
administration of such sensor networks. In particular,
we introduce a method to reliably perform calibrated
unit conversion of all sensor readings, as well as a set of
abstraction layers to allow for extensibility. Our goal is
to present the data in a highly usable form, employing
effective visualization techniques, whether simple or
sophisticated, with a particular emphasis on
performance.

2. Background

In order to contain failure points within a sensor
network system, it is helpful to isolate disparate
portions of the system in terms of the software used.
Typically, sensor network deployments involve three
distinct software tiers: the mote tier, the server tier, and
the client tier.

Figure 1: Software used in typical deployments

The mote tier comprises any embedded software

that runs on the mote hardware, including a tiny micro-
threaded operating system (such as TinyOS [6]),
firmware applications, and sensor board drivers. Such
embedded software is written specifically for the
hardware in a language designed for resource-
constrained devices such as nesC, C, or assembly. The
server tier provides data logging, database storage, and
services for forwarding sensor data coming from the
mote gateway. Cross-platform portability is important
in the server tier since the hardware may be a PC
running Windows or a dedicated appliance running
Linux. This portability requirement encourages the use
of high-level languages such as Java or C++ within the
server tier. The client tier provides a Graphical User
Interface (GUI) for managing and visualizing the server
and mote tier and is typically designed to run well on an
end-user platform of choice: a personal computer or a
handheld personal digital assistant (PDA).

MOTE-VIEW is a client tier application designed
to provide users of wireless sensor networks an
interface for end-to-end management and supervision of
a deployment. It focuses particularly on solving the
three main problems described earlier: data overload,
health monitoring, and visualization. The rest of this
paper details the design and features of MOTE-VIEW.

3. Architecture

Modules within the MOTE-VIEW client are
conceptually split into one of four layers. Each of the
four layers includes a plug-in capability for providing
modular extensions. By mandating a common interface
that is extendable with plug-ins, each layer can flexibly
scale to support disparate needs within a common
framework.

Figure 2: MOTE-VIEW client-tier abstraction of
sensor network data

3.1 Data Access Abstraction Layer

The MOTE-VIEW client has an interface to
abstract and standardize direct access of sensor network
data. Such an abstraction is useful because the server
tier can provide various sensor network services, or
data sources, such as a database of historical readings, a
TCP/IP socket providing a live stream of data, or a flat
file log. All accesses to sensor network data from client
tier modules are done through a Data Access
Abstraction Layer (data layer). Each server tier data
source has a corresponding driver implemented as a
data layer plug-in. By interfacing to the data layer,
other MOTE-VIEW modules do not need to know the
specifics of how to access the server and can instead
make general data-centric requests that get mapped to a
particular server service. Initially, data layer calls
command an SQL database, specifically via an ODBC
(Open Database Connectivity) driver to PostgreSQL,
and could be extended to access other services with a
plug-in. A database server was chosen over a flat file as
the data source for the first version because a database
makes random access of the data convenient through
SQL, simplifies concurrent connections to the data over
TCP/IP, and ably supports large amounts of data.

3.2 Node Status and Configuration

Mote platforms are constantly being redesigned,
improved, and optimized for particular applications.
How to characterize the motes, or nodes, within a
sensor network is therefore a logical place to build
another layer of abstraction. Each node has some
metadata, information that is constant for the entire
deployment lifetime: name, set of sensors,
configuration, and calibration coefficients. All requests
for such node-specific information are made through
this Node Abstraction Layer (node layer) and not
directly to the database. The node layer is updated upon
successful connection to a new database and is

Data Access Abstraction Layer

Database

Node Abstraction
Layer

Calibration and
Unit Conversions

Visualization Abstraction Layer

Server File

refreshed by any update events sent from the data layer.
User-defined mote parameter settings, such as radio
frequency and power selection, sample rate, and custom
calibration, are configured by interfacing to the node
layer. The node layer is also used to cache the latest
results from each node.

Plug-in modularity at this layer provides support
for new sensor boards and mote platforms. A new node
layer module, for example, could expose an interface
for selecting channels for external probes or setting the
excitation voltage of a data acquisition board. Another
suitable application would be altering the list of sensor
readings to forward in a data packet. Any user
preferences set in the node layer are subsequently
forwarded to the mote via the data layer.

3.3 Calibration and Unit Conversion

Raw sensor data are typically provided as direct
digital readings coming out of an ADC (Analog to
Digital Converter). The analog voltage of the sensor is
sampled and converted to a number relative to some
reference voltage. To make the data useful, it is
important that
they be calibrated and converted to engineering units.
Because users will have different preferences as to what
final units they prefer, all requests for actual sensor
readings are done via a Conversion Abstraction Layer
(conversion layer). Drawing from experience working
with various sensors, we have found that proper
conversion of readings requires:

• The ADC reading from the sensor
• Calibration coefficients for the sensor
• Values for any other dependant variables

The conversion layer uses calibration coefficients from
the node layer and raw data readings from the data layer
to calculate and return final readings in engineering
units. All conversion routines belong to this layer. As
with the other layers, the conversion layer provides the
capability to add extension modules through a plug-in
architecture. Such modules supply a library of
conversion equations to handle new unit types.

Unit conversion functions take the general form of
 ystd = F(ADC, c0, …, cn, d0, …, dn)

 yeng = G(ystd, ueng)

where ADC is the raw reading from the sensor, ci is
the set of calibration coefficients, and di is the set of
dependant variables. Common dependant variables are
temperature and voltage. Because converting between
different engineering units is straightforward, and
converting from raw ADC to engineering units can be
complex, the conversion is split into two functions: F
and G. F supplies a result in standard international
units, which, in the case of temperature would be

degrees Celsius. G then converts that value to user-
preferred engineering units (enumerated by ueng) such
as Kelvin or degrees Fahrenheit. G functions are
implemented for all unit groups, including temperature,
pressure, and acceleration; F functions are specific to
particular sensor components, including those
manufactured by Sensirion and Intersema.

3.4 Graphical Visualization of

Wireless Sensor Networks

Many users will interface with the sensor network
through a textual and graphical display of sensory and
link quality data. MOTE-VIEW initially focuses on
three representations: (1) instantaneous data points, (2)
plots over a span of time, and (3) spatial maps at an
instant in time. These different representations are
implemented as (1) a spreadsheet, (2) a two-
dimensional chart with time as the abscissa, and (3) a
network topology map respectively. These three
visualizations are just a small subset of the possible
ways to view data provided by a sensor network. Each
of the three visualizations has similarities in the way it
interacts with the lower layers of MOTE-VIEW. This
overlap is made explicit in a Visualization Abstraction
Layer (visualization layer) and is used to form a general
plug-in architecture for extending or creating new
visualization tools that can be added to MOTE-VIEW.
These visualization plug-ins facilitate the extension of
MOTE-VIEW’s initial set of text and graphical user
interfaces.

View Name Description
Data Spreadsheet view of most recent sensor

readings from each node
Chart Time span plot of a specific sensor over

a selected set of nodes
Topology Overhead view of nodes in a deployment

with network links.
Figure 3: Table of initial visualization modules
with MOTE-VIEW

The visualization layer also abstracts the concept of

time such that it can be controlled by the user. Although
the data layer is normally in a real-time or “live” mode,
the user may opt to decouple the graphical visualization
from the current moment and browse through historical
data in a temporal context. This option is provided
using a “time bar” component. The time bar supplies a
scroll bar and a set of playback controls that link into
and command the data grid, chart, and topology. It
allows the user to scroll the views back and forth within
the time domain and create animated movies of the
data.

4. Performance Analysis
A good wireless sensor network monitoring tool

needs to perform well in three principle ways. First, it
needs to be responsive and sift through the data quickly.
Second, it must provide a meaningful assessment of the
health and status of the network. Third, it must make
data from the sensor network available to the user and
present that information in the most effective and
functional way possible. In this section we evaluate the
performance of MOTE-VIEW according to these
criteria. In cases where we have found performance
limitations, we discuss possible solutions and future
directions.

4.1 Database Performance

Efficient database retrieval is a critical component
of any sensor network visualization tool. Because of
long data collection periods and the large number of
sample points, the volume of data can grow large. Users
tend to expect a monitoring tool to respond
instantaneously, however, because the update interval
of the network is often set to be slow for power
efficiency. Proper caching and indexing is therefore
crucial.

Sensor network database problems tend to be
temporal in nature due to the inherent importance of
coupling a sensor reading with the time it was taken.
There are three database queries that have been
identified as critical to the performance of sensor
network visualization problems:

1) What is the last reading from each unique
node?

2) What are all the readings from a subset of
nodes?

3) What are the node readings in a given time
range?

Query 3: This query is useful for charting and

creating movies of sensor data readings over time. An
effective way to speed up such a query is to create a
binary tree index tied to the time field of this data.
However, a time range query will not indicate whether
a node has ever reported, thus necessitating the need for
Query 1 to quickly determine the last reading from each
unique node.

Query 2: This query is primarily used for charting.
Indexing the data by node ID can speed up this query,
but use of such an index tends to be fragile to the
database optimizer logic and only speeds up the
operation by a limited amount. To achieve more
significant improvements, a subset of random samples
can be used instead. Depending on the resolution of the
sampling, the operation time can be substantially
improved. Moreover, this speed improvement may be

achieved at no cost since the number of data points
required is often limited by the number of screen pixels
rather than the total number of data points.

Query 1: This query is used to populate the node
list and for live updates of the data grid and topology
map:

SELECT DISTINCT ON (nodeid) * FROM
result_table ORDER BY nodeid, result_time
DESC;

Though such a query should theoretically be sped up by
a time-based index, some database engine optimizers do
not use the index even when it was available.
Completion time for such a query therefore results in
being O(n) with respect to the number of records and
corresponds closely to the time required to draw all
records from the results table (see Figure 3.) In solving
this problem, a caching technique proves essential.
Instead of forcing the user to wait minutes to open or
update the monitoring application, a last results table is
created, which takes only 20ms to read. The onus is on
the server-side data logger to populate and update this
table. An SQL rule is added to do this automatically on
every insert by the data logger:

CREATE RULE last_result_table AS
ON INSERT TO result_table DO (DELETE FROM
last_result_table WHERE nodeid =
NEW.nodeid; INSERT INTO last_result_table
VALUES (NEW.*););

Query Time vs. Data Size

0.01

0.1

1

10

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Data (Days)

Q
ue

ry
 T

im
e

(s
ec

)

4 nodes every 16 sec
8 nodes every 180 sec
25 nodes every 150 sec
100 nodes every 180 sec

Figure 4: Database access time required to
determine last reading from all unique nodes

4.2 Health Monitoring

Mechanisms to track the health and status of
individual nodes and the network as a whole are
considered an essential component of real-world
deployments [4]. MOTE-VIEW provides a simple yet
effective framework for gleaning a first-order estimate
of the reliability of a node. The last reading received

from an individual node is subtracted from the current
server time to calculate a health metric called freshness.
For example, if no readings from a node have been
received for 60 minutes, the color of the node on the
display erodes from green to orange to signify that the
readings are stale. This technique works remarkably
well for locating nodes that have gone offline.

Color coding the health of a node also can be used
for other metrics:

Name Description Formula
Freshness Time since last result now –

result_time
Success/Yield % data packets

received at base
station (not including
retries)

received / #
unique sends
(seq_no)

Throughput % data packets
received at base
station (including
retries)

received /
(seq_no +
retries)

Quality Estimate of radio link
reliability

WMEWMA [5]
or avg.
throughput to
parent

Bandwidth # successful packets
over time interval of
one second

1 sec
∑ receivedi
t=0

Congestion Measure of
bottlenecks within the
network

Bandwidth /
Channel
Capacity

Fairness [3] Estimate of how well
channel capacity is
shared

Var(Throughput)
Var(Bandwidth)

Figure 5: Table of useful metrics for
determining network health

A detailed description and analysis of the wide

variety of possible network health metrics is beyond the
scope of this paper. However, many such metrics are
available and essential for proper real-time evaluation
of the health of a network. Not only is careful selection
and construction of such metrics important, but so is the
way the information is presented to the user so as to
maximize its efficacy for health monitoring.

4.3 Battery Life Characterization

The ability to accurately estimate the expected
lifetime of a mote is highly desirable. By building good
models of battery behavior and characterizing the
energy use of particular firmware applications, long-
term monitoring networks can be deployed with greater
confidence and less administration. Including the

current voltage level in the data packet is an easy way
to provide an instantaneous view of the battery level
and can be invaluable for tracking the root cause of
node failure.

A more sophisticated and accurate means of
estimating node lifetime is to track the amount of time
the node has been on. By profiling the time the node is
awake in various states and coupling that data with
estimates of the current draw of those states, amp·hour
estimates can be achieved that correlate highly with
actual measurement. Such an integrated current
calculation is exactly what is needed to display a power
meter for each mote. Unfortunately, such battery
characterization requires detailed analysis and
customization of the firmware, but this is a worthwhile
step for important or expensive deployments. At least
one TinyOS application, Surge_TimeSync, outfitted
with such a power monitoring technique is currently
available.

4.4 Graphical Performance

Performance of the visualization layer tends to be
database limited. While advanced graphical methods
can take time, limits in screen resolution provide a
natural maximum to the number of data that can be
represented. Charting speed is a good example of this
phenomenon. By plotting a thinned sample of the data
within a desired time span, the charting speed is
improved by a factor relative to the inverse of the
thinning factor. For instance, plotting 10 percent of the
data results in a 10x speed up.

4.5 Promising Visualization Techniques

Currently the scale of deployments tends to be in
the hundreds of nodes with recent projects, most
notably the DARPA eXtreme Scaling Mote (XSM)
project, pushing into the thousands [7]. However, when
the number of nodes exceeds a few hundred, current
visualization paradigms quickly break down.
Fortunately, this problem has arisen in other fields, and
the research community has devised a rich set of
techniques for addressing large, complex datasets. In
this section, we explore and evaluate visualization
methods that map well to the sensor network domain.

When dealing with large numbers of nodes,
presentation techniques such as data grids, node lists,
and topology maps become overwhelmed. Imagine
scrolling through a node list or data grid of more than
10,000 nodes. One method of managing this plethora is
to build interfaces for dividing the deployment into
logical or regional sets and to visualize details of one
such set of nodes either individually, or as an aggregate
displayed against other aggregates.

View Name Description
Aggregate
Columns [9]

Topology view is displayed as a flat
plane in 3D. Vertical columns are drawn
at each node location with height linked
to sensor value. A zoom-in feature
provides detailed analysis. Columns are
aggregated for close proximity nodes
when zooming out.

Calendar
Charting [10]

A 3D chart with sensor value on z-axis,
time within day on y-axis, and actual day
on x-axis. Provides a mountain range
overview of daily trends.

Graphic
Spreadsheets
[11]

Displays a grid of visualizations rendered
at different times. For example, a 3x3
view of topology over two months would
provide a quick comparison of weekly
network reformation trends.

Node Dome
[12]

Displays a 3D hemisphere overlaid with
the parenting tree of the network. The
ball can be rotated and morphed to zoom
in on a region. Provides intuitive group
selection for deployments of more than
10,000 nodes.

Figure 6: Table of promising future visualization
modules

5. Discussion

In this section, we present a scenario in which a
wireless sensor network is employed and show how
MOTE-VIEW is used to achieve the objectives of the
deployment. The goal is to create a system for detecting
intrusions to hazardous areas. Intrusion detection is, in
many ways, a perfect fit for wireless sensor
technologies. By ubiquitously placing nodes that can
sense a local intrusion and linking them together in a
network, the entire area becomes suddenly aware of
anything that trespasses through it.

To fully achieve this goal, the mote needs to be
equipped with sensors that suit the task. The
XSM600CA intrusion detection mote by Crossbow
Technologies is specifically designed for this
role. This particular hardware platform has four
Passive Infrared (PIR) sensors placed on four
sides of the board, a magnetometer, and a
microphone. The four PIR sensors detect the
motion of a human within 20 feet and a vehicle
within 40 feet. The magnetometer detects the
movement of metallic objects and is used to discern
between humans and vehicles. The microphone
provides detection of acoustic triggers.

5.1 Benefits of Modular Visualization Design

By creating an extensible architecture, MOTE-
VIEW can easily be modified for vertical market
opportunities or custom projects. One example of this is
used with a custom version of the XSM600CA

intrusion detection mote, which has been modified to
add quadrant detection circuitry for discerning which
combination of the four PIRs triggered a detection
event. The topology view of MOTE-VIEW was
extended to display the actual quadrants that fire in
real-time. Also, because thermal air currents tend to
trigger false detections on the PIRs, a simple
aggregation algorithm was added to validate detection
events only when a corresponding event is seen by at
least one neighbor node within a short time window.
False positives are depicted as hollowed out wedges,
whereas a validated event is drawn as a solid orange
wedge in the direction of each quadrant that fired.

This extended topology view, customized for a
network of XSM600 motes, is then used to monitor the
real-time movements of humans and vehicles through a
simulated hazardous area. The motes are placed in a
grid, 40 feet apart within a column, with the columns 20
feet apart and staggered so the motes are also 40 feet
apart within a row (see Fig. 7). MOTE-VIEW is
running on a tablet PC and provides updated views of
the state of the network every second. The correlation
between the display and the real-life events is
impressive. A car driving through the area lights up the
display in a way that corresponds visibly with its actual
path.

Figure 7: MOTE-VIEW display of XSM600 sensor
network detecting vehicle intrusion in a parking
lot test. PIR triggers are depicted with an
orange wedge for each quadrant, and
magnetometer triggers are depicted with red
node coloring.

Figure 8: IsoBar display of light data in MOTE-VIEW

5.2 Heterogeneous Deployment Challenges

The issues with increasing the density of
deployments, which we described earlier, are
compounded when disparate node types are deployed
outfitted with different sensors. Therefore, it becomes
increasingly important in managing such heterogeneous
sensor networks that software tools handle incoming
data in a general and intuitive way.

By mixing nodes with disparate sets of sensors
within the same network, several complications arise.
First, the packet format of the various nodes cannot be
the same. Because sensor networks use low bandwidth
transfers, the amount of data within a data packet is
often limited to those sensors with which a given node
is equipped. Second, a fixed schema for the results table
is no longer sufficient.

6. Conclusion

Managing and monitoring wireless sensor networks
presents a variety of challenges. Modular design will be
key to allow solutions to scale flexibly with the
inevitable growth such networks will experience in the
future. In conclusion, the MOTE-VIEW framework
provides a sound basis for addressing many such
challenges.

Acknowledgments

Much thanks to Mike Horton, Alan Broad, John
Suh and all the early adopters of MOTE-VIEW at
Crossbow Technologies for their support of this work.
The assistance of Alan Mainwaring and Wei Hong of
Intel Research was also greatly appreciated. Finally,
Meghan Ward deserves everlasting gratitude for her
editing care.

References

[1] R. Szewczyk, J. Polastre, A. Mainwaring, D. Culler.

Lessons from a Sensor Network Expedition. In
Proceedings of the 1st European Workshop on Wireless
Sensor Networks (EWSN), Jan. 2004

[2] D.Culler, J. Hill, P. Buonadonna, R. Szewczyk, A. Woo.
A Network-Centric Approach to Embedded Software for
Tiny Devices. In First International Workshop on
Embedded Software (EMSOFT), Oct. 2001

[3] A.Woo, T.Tong, D. Culler. Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor
Networks. In SenSys, Nov. 2003

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.
Anderson. Wireless Sensor Networks for Habitat
Monitoring. In Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and
Applications (WSNA), Sep, 2002

[5] A. Woo, D. Culler. Evaluation of Efficient Link Quality
Estimators for Low-Power Wireless Networks.

[6] J.Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.
Pister. System Architecture Directions for Networked
Sensors.

[7] J. Suh, M. Horton. Current Hardware and Software
Technology for Sensor Networks. In 1st International
Workshop on Networked Sensing Systems (INNS), June
2004

[8] J. Hill, M. Horton, R. Kling, L. Krishnamurthy. The
Platforms Enabling Wireless Sensor Networks. In review
for CACM, Jan. 2004

 [9] J. Rayson. Aggregate Towers: Scale Sensitive
Visualization and Decluttering of Geospacial Data.
IEEE, 1999

[10] J. Wijk, E. Selow. Cluster and Calendar based
Visualization of Time Series Data. IEEE, 1999

[11] E. Chi, S. Card. Sensemaking of Evolving Web Sites
Using Visualization Spreadsheets. IEEE, 1999

[12] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, S.
Madden. TASK: Sensor Network in a Box. IRB-TR-04-
021, Jan 2005

[13] O. Staadt, B. Hamann, O. Kreylos, V. Szudziejka.
Visualization of Sensor Networks and Sensor Data. In
Center for Information Technology Research in the
Interest of Society (CITRIS), June 2004

 [14] J. Hellerstein, W. Hong, S. Madden, K. Stanek. Beyond
Average: Toward Sophisticated Sensing with Queries. In
2nd International Symposium of Information Processing
in Sensor Networks (IPSN) Apr. 2003

[15] J. Burrell, T. Brooke, R. Beckwith. Vineyard
Computing: Sensor Networks in Agricultural Production.
IEEE Pervasive Computing Vol. 3 No. 1, Jan 2004

