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Abstract 

This paper presents a scalable software framework for 
managing, monitoring, and visualizing sensor network 
deployments called MOTE-VIEW. In this paper, we 
conduct a comprehensive review of typical problems 
encountered when deploying and administering 
wireless sensor networks. Then we address these issues 
by outlining a monitoring tool architecture using an 
extensible set of user interface components specifically 
targeted towards improving manageability and easing 
deployment of wireless sensor networks. We describe 
specific visualization modules for intuitively 
characterizing data represented in instantaneous, time 
span, and spatial form. Next, we will analyze and 
optimize the database requirements of the proposed 
visualization modules for performance. Finally, we 
describe a mechanism for analyzing the health of the 
individual nodes and the network as a whole. 
    
1. Introduction 

Wireless sensor networks are a revolutionary, 
enabling technology, making possible for the first time 
many novel applications in the fields of environmental 
monitoring, industrial control, object tracking, and 
security. Compared to previous methods, the level of 
resolution and detail that can be gleaned from scattering 
a large set of tiny, low-power, sensing devices 
throughout a region is staggering. Despite the exciting 
possibilities of sensor networks, however, the practical 
administration of such systems presents clear 
challenges: 
 

1. Data volume: The sheer volume of data 
generated by sensor networks can be 
tremendous, particularly as the sample rate and 
number of nodes is increased. Even if the 
amount of sensor data collected is constrained 
to the bandwidth limitations of the wireless 
network, real-time requests for the data can 
overwhelm the server at the base station if the 
database queries are not properly designed.  

 
2. Health monitoring: Each mote, an individual 

data collection point, is both exposed to the 
harsh conditions of the environment that 
surrounds it [1], and limited by the aggressive 
requirements of maintaining low-power 
operation to preserve battery life [2]. The 
network as a whole is designed to withstand 
the inevitable failure of particular motes [3], 
but the fragile nature of each mote makes 
managing the dynamics of network 
reconfiguration and health evaluation difficult 
problems. 

 
3. Information visualization: Presenting and 

interpreting the voluminous data that are 
collected presents classic challenges in 
information visualization.  

 
Therefore, we formulate a framework to directly 

address issues with managing large sets of sensor data 
generated by wireless sensor networks. This graphical 
user interface tool, called MOTE-VIEW, is designed to 
simplify, from the perspective of the end user, 
administration of such sensor networks. In particular, 
we introduce a method to reliably perform calibrated 
unit conversion of all sensor readings, as well as a set of 
abstraction layers to allow for extensibility. Our goal is 
to present the data in a highly usable form, employing 
effective visualization techniques, whether simple or 
sophisticated, with a particular emphasis on 
performance. 

 
2. Background 

In order to contain failure points within a sensor 
network system, it is helpful to isolate disparate 
portions of the system in terms of the software used. 
Typically, sensor network deployments involve three 
distinct software tiers: the mote tier, the server tier, and 
the client tier.  

 



 
Figure 1: Software used in typical deployments 

 
The mote tier comprises any embedded software 

that runs on the mote hardware, including a tiny micro-
threaded operating system (such as TinyOS [6]), 
firmware applications, and sensor board drivers. Such 
embedded software is written specifically for the 
hardware in a language designed for resource-
constrained devices such as nesC, C, or assembly. The 
server tier provides data logging, database storage, and 
services for forwarding sensor data coming from the 
mote gateway. Cross-platform portability is important 
in the server tier since the hardware may be a PC 
running Windows or a dedicated appliance running 
Linux. This portability requirement encourages the use 
of high-level languages such as Java or C++ within the 
server tier. The client tier provides a Graphical User 
Interface (GUI) for managing and visualizing the server 
and mote tier and is typically designed to run well on an 
end-user platform of choice: a personal computer or a 
handheld personal digital assistant (PDA).  

MOTE-VIEW is a client tier application designed 
to provide users of wireless sensor networks an 
interface for end-to-end management and supervision of 
a deployment.  It focuses particularly on solving the 
three main problems described earlier: data overload, 
health monitoring, and visualization. The rest of this 
paper details the design and features of MOTE-VIEW.  

 
3. Architecture 

Modules within the MOTE-VIEW client are 
conceptually split into one of four layers. Each of the 
four layers includes a plug-in capability for providing 
modular extensions. By mandating a common interface 
that is extendable with plug-ins, each layer can flexibly 
scale to support disparate needs within a common 
framework.  

 
Figure 2: MOTE-VIEW client-tier abstraction of 
sensor network data 

  
3.1 Data Access Abstraction Layer 

The MOTE-VIEW client has an interface to 
abstract and standardize direct access of sensor network 
data. Such an abstraction is useful because the server 
tier can provide various sensor network services, or 
data sources, such as a database of historical readings, a 
TCP/IP socket providing a live stream of data, or a flat 
file log. All accesses to sensor network data from client 
tier modules are done through a Data Access 
Abstraction Layer (data layer).  Each server tier data 
source has a corresponding driver implemented as a 
data layer plug-in. By interfacing to the data layer, 
other MOTE-VIEW modules do not need to know the 
specifics of how to access the server and can instead 
make general data-centric requests that get mapped to a 
particular server service. Initially, data layer calls 
command an SQL database, specifically via an ODBC 
(Open Database Connectivity) driver to PostgreSQL, 
and could be extended to access other services with a 
plug-in. A database server was chosen over a flat file as 
the data source for the first version because a database 
makes random access of the data convenient through 
SQL, simplifies concurrent connections to the data over 
TCP/IP, and ably supports large amounts of data.  

 
3.2 Node Status and Configuration 

Mote platforms are constantly being redesigned, 
improved, and optimized for particular applications. 
How to characterize the motes, or nodes, within a 
sensor network is therefore a logical place to build 
another layer of abstraction. Each node has some 
metadata, information that is constant for the entire 
deployment lifetime:  name, set of sensors, 
configuration, and calibration coefficients. All requests 
for such node-specific information are made through 
this Node Abstraction Layer (node layer) and not 
directly to the database. The node layer is updated upon 
successful connection to a new database and is 

Data Access Abstraction Layer 

Database 

Node Abstraction 
Layer 

Calibration and 
Unit Conversions 

Visualization Abstraction Layer 

Server File 



refreshed by any update events sent from the data layer. 
User-defined mote parameter settings, such as radio 
frequency and power selection, sample rate, and custom 
calibration, are configured by interfacing to the node 
layer. The node layer is also used to cache the latest 
results from each node. 

Plug-in modularity at this layer provides support 
for new sensor boards and mote platforms. A new node 
layer module, for example, could expose an interface 
for selecting channels for external probes or setting the 
excitation voltage of a data acquisition board. Another 
suitable application would be altering the list of sensor 
readings to forward in a data packet. Any user 
preferences set in the node layer are subsequently 
forwarded to the mote via the data layer. 
 
3.3 Calibration and Unit Conversion 

Raw sensor data are typically provided as direct 
digital readings coming out of an ADC (Analog to 
Digital Converter). The analog voltage of the sensor is 
sampled and converted to a number relative to some 
reference voltage. To make the data useful, it is 
important that  
they be calibrated and converted to engineering units. 
Because users will have different preferences as to what 
final units they prefer, all requests for actual sensor 
readings are done via a Conversion Abstraction Layer 
(conversion layer). Drawing from experience working 
with various sensors, we have found that proper 
conversion of readings requires: 

• The ADC reading from the sensor 
• Calibration coefficients for the sensor 
• Values for any other dependant variables 

The conversion layer uses calibration coefficients from 
the node layer and raw data readings from the data layer 
to calculate and return final readings in engineering 
units. All conversion routines belong to this layer. As 
with the other layers, the conversion layer provides the 
capability to add extension modules through a plug-in 
architecture. Such modules supply a library of 
conversion equations to handle new unit types. 

Unit conversion functions take the general form of 
 ystd = F(ADC, c0, …, cn, d0, …, dn) 

 yeng = G(ystd, ueng)  

where ADC is the raw reading from the sensor, ci is 
the set of calibration coefficients, and di is the set of 
dependant variables. Common dependant variables are 
temperature and voltage. Because converting between 
different engineering units is straightforward, and 
converting from raw ADC to engineering units can be 
complex, the conversion is split into two functions: F 
and G. F supplies a result in standard international 
units, which, in the case of temperature would be 

degrees Celsius. G then converts that value to user-
preferred engineering units (enumerated by ueng) such 
as Kelvin or degrees Fahrenheit. G functions are 
implemented for all unit groups, including temperature, 
pressure, and acceleration;  F functions are specific to 
particular sensor components, including those 
manufactured by Sensirion and Intersema. 
 
3.4 Graphical Visualization of 

Wireless Sensor Networks 
 

Many users will interface with the sensor network 
through a textual and graphical display of sensory and 
link quality data. MOTE-VIEW initially focuses on 
three representations: (1) instantaneous data points, (2) 
plots over a span of time, and (3) spatial maps at an 
instant in time. These different representations are 
implemented as (1) a spreadsheet, (2) a two-
dimensional chart with time as the abscissa, and (3) a 
network topology map respectively. These three 
visualizations are just a small subset of the possible 
ways to view data provided by a sensor network. Each 
of the three visualizations has similarities in the way it 
interacts with the lower layers of MOTE-VIEW. This 
overlap is made explicit in a Visualization Abstraction 
Layer (visualization layer) and is used to form a general 
plug-in architecture for extending or creating new 
visualization tools that can be added to MOTE-VIEW. 
These visualization plug-ins facilitate the extension of 
MOTE-VIEW’s initial set of text and graphical user 
interfaces. 

 
View Name Description 
Data Spreadsheet view of most recent sensor 

readings from each node 
Chart Time span plot of a specific sensor over 

a selected set of nodes 
Topology Overhead view of nodes in a deployment 

with network links. 
Figure 3: Table of initial visualization modules 
with MOTE-VIEW 

 
The visualization layer also abstracts the concept of 

time such that it can be controlled by the user. Although 
the data layer is normally in a real-time or “live” mode, 
the user may opt to decouple the graphical visualization 
from the current moment and browse through historical 
data in a temporal context. This option is provided 
using a “time bar” component. The time bar supplies a 
scroll bar and a set of playback controls that link into 
and command the data grid, chart, and topology.  It 
allows the user to scroll the views back and forth within 
the time domain and create animated movies of the 
data.  

 



4. Performance Analysis 
A good wireless sensor network monitoring tool 

needs to perform well in three principle ways. First, it 
needs to be responsive and sift through the data quickly. 
Second, it must provide a meaningful assessment of the 
health and status of the network. Third, it must make 
data from the sensor network available to the user and 
present that information in the most effective and 
functional way possible. In this section we evaluate the 
performance of MOTE-VIEW according to these 
criteria. In cases where we have found performance 
limitations, we discuss possible solutions and future 
directions. 
 
4.1 Database Performance 

Efficient database retrieval is a critical component 
of any sensor network visualization tool. Because of 
long data collection periods and the large number of 
sample points, the volume of data can grow large. Users 
tend to expect a monitoring tool to respond 
instantaneously, however, because the update interval 
of the network is often set to be slow for power 
efficiency. Proper caching and indexing is therefore 
crucial.  

Sensor network database problems tend to be 
temporal in nature due to the inherent importance of 
coupling a sensor reading with the time it was taken. 
There are three database queries that have been 
identified as critical to the performance of sensor 
network visualization problems:  

1) What is the last reading from each unique 
node? 

2) What are all the readings from a subset of 
nodes? 

3) What are the node readings in a given time 
range? 

 
Query 3: This query is useful for charting and 

creating movies of sensor data readings over time. An 
effective way to speed up such a query is to create a 
binary tree index tied to the time field of this data. 
However, a time range query will not indicate whether 
a node has ever reported, thus necessitating the need for 
Query 1 to quickly determine the last reading from each 
unique node.  

Query 2: This query is primarily used for charting. 
Indexing the data by node ID can speed up this query, 
but use of such an index tends to be fragile to the 
database optimizer logic and only speeds up the 
operation by a limited amount. To achieve more 
significant improvements, a subset of random samples 
can be used instead. Depending on the resolution of the 
sampling, the operation time can be substantially 
improved. Moreover, this speed improvement may be 

achieved at no cost since the number of data points 
required is often limited by the number of screen pixels 
rather than the total number of data points. 

Query 1: This query is used to populate the node 
list and for live updates of the data grid and topology 
map: 

 
SELECT DISTINCT ON (nodeid) * FROM 
result_table ORDER BY nodeid, result_time 
DESC; 
 

Though such a query should theoretically be sped up by 
a time-based index, some database engine optimizers do 
not use the index even when it was available. 
Completion time for such a query therefore results in 
being O(n) with respect to the number of records and 
corresponds closely to the time required to draw all 
records from the results table (see Figure 3.)  In solving 
this problem, a caching technique proves essential. 
Instead of forcing the user to wait minutes to open or 
update the monitoring application, a last results table is 
created, which takes only 20ms to read. The onus is on 
the server-side data logger to populate and update this 
table. An SQL rule is added to do this automatically on 
every insert by the data logger:  
 

CREATE RULE last_result_table AS  
ON INSERT TO result_table DO ( DELETE FROM 
last_result_table WHERE nodeid = 
NEW.nodeid; INSERT INTO last_result_table 
VALUES ( NEW.* ); ); 
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Figure 4: Database access time required to 
determine last reading from all unique nodes 

 
4.2 Health Monitoring 

Mechanisms to track the health and status of 
individual nodes and the network as a whole are 
considered an essential component of real-world 
deployments [4]. MOTE-VIEW provides a simple yet 
effective framework for gleaning a first-order estimate 
of the reliability of a node. The last reading received 



from an individual node is subtracted from the current 
server time to calculate a health metric called freshness.  
For example, if no readings from a node have been 
received for 60 minutes, the color of the node on the 
display erodes from green to orange to signify that the 
readings are stale. This technique works remarkably 
well for locating nodes that have gone offline. 

Color coding the health of a node also can be used 
for other metrics: 

 
Name Description Formula 
Freshness Time since last result now – 

result_time 
Success/Yield % data packets 

received at base 
station (not including 
retries) 

# received / # 
unique sends 
(seq_no) 

Throughput % data packets 
received at base 
station (including 
retries) 

# received / 
(seq_no + 
retries) 

Quality Estimate of radio link 
reliability  

WMEWMA [5] 
or avg. 
throughput to 
parent 

Bandwidth # successful packets 
over time interval of 
one second 

1 sec 
∑ receivedi  
t=0  

Congestion Measure of 
bottlenecks within the 
network 

Bandwidth / 
Channel 
Capacity 

Fairness [3] Estimate of how well 
channel capacity is 
shared 

Var(Throughput) 
Var(Bandwidth) 

Figure 5: Table of useful metrics for 
determining network health 
 
A detailed description and analysis of the wide 

variety of possible network health metrics is beyond the 
scope of this paper. However, many such metrics are 
available and essential for proper real-time evaluation 
of the health of a network. Not only is careful selection 
and construction of such metrics important, but so is the 
way the information is presented to the user so as to 
maximize its efficacy for health monitoring.  

 
4.3 Battery Life Characterization 

The ability to accurately estimate the expected 
lifetime of a mote is highly desirable. By building good 
models of battery behavior and characterizing the 
energy use of particular firmware applications, long-
term monitoring networks can be deployed with greater 
confidence and less administration. Including the 

current voltage level in the data packet is an easy way 
to provide an instantaneous view of the battery level 
and can be invaluable for tracking the root cause of 
node failure.  

A more sophisticated and accurate means of 
estimating node lifetime is to track the amount of time 
the node has been on. By profiling the time the node is 
awake in various states and coupling that data with 
estimates of the current draw of those states, amp·hour 
estimates can be achieved that correlate highly with 
actual measurement. Such an integrated current 
calculation is exactly what is needed to display a power 
meter for each mote. Unfortunately, such battery 
characterization requires detailed analysis and 
customization of the firmware, but this is a worthwhile 
step for important or expensive deployments. At least 
one TinyOS application, Surge_TimeSync, outfitted 
with such a power monitoring technique is currently 
available.  
 
4.4 Graphical Performance 

Performance of the visualization layer tends to be 
database limited. While advanced graphical methods 
can take time, limits in screen resolution provide a 
natural maximum to the number of data that can be 
represented. Charting speed is a good example of this 
phenomenon. By plotting a thinned sample of the data 
within a desired time span, the charting speed is 
improved by a factor relative to the inverse of the 
thinning factor. For instance, plotting 10 percent of the 
data results in a 10x speed up. 

 
4.5 Promising Visualization Techniques 

Currently the scale of deployments tends to be in 
the hundreds of nodes with recent projects, most 
notably the DARPA eXtreme Scaling Mote (XSM) 
project, pushing into the thousands [7]. However, when 
the number of nodes exceeds a few hundred, current 
visualization paradigms quickly break down. 
Fortunately, this problem has arisen in other fields, and 
the research community has devised a rich set of 
techniques for addressing large, complex datasets. In 
this section, we explore and evaluate visualization 
methods that map well to the sensor network domain. 

When dealing with large numbers of nodes, 
presentation techniques such as data grids, node lists, 
and topology maps become overwhelmed. Imagine 
scrolling through a node list or data grid of more than 
10,000 nodes. One method of managing this plethora is 
to build interfaces for dividing the deployment into 
logical or regional sets and to visualize details of one 
such set of nodes either individually, or as an aggregate 
displayed against other aggregates.  

 



View Name Description 
Aggregate 
Columns [9] 

Topology view is displayed as a flat 
plane in 3D. Vertical columns are drawn 
at each node location with height linked 
to sensor value. A zoom-in feature 
provides detailed analysis. Columns are 
aggregated for close proximity nodes 
when zooming out. 

Calendar 
Charting [10] 

A 3D chart with sensor value on z-axis, 
time within day on y-axis, and actual day 
on x-axis. Provides a mountain range 
overview of daily trends. 

Graphic 
Spreadsheets 
[11] 

Displays a grid of visualizations rendered 
at different times. For example, a 3x3 
view of topology over two months would 
provide a quick comparison of weekly 
network reformation trends.  

Node Dome  
[12] 

Displays a 3D hemisphere overlaid with 
the parenting tree of the network. The 
ball can be rotated and morphed to zoom 
in on a region. Provides intuitive group 
selection for deployments of more than 
10,000 nodes. 

Figure 6: Table of promising future visualization 
modules 

 
5. Discussion 

In this section, we present a scenario in which a 
wireless sensor network is employed and show how 
MOTE-VIEW is used to achieve the objectives of the 
deployment. The goal is to create a system for detecting 
intrusions to hazardous areas. Intrusion detection is, in 
many ways, a perfect fit for wireless sensor 
technologies. By ubiquitously placing nodes that can 
sense a local intrusion and linking them together in a 
network, the entire area becomes suddenly aware of 
anything that trespasses through it.  

To fully achieve this goal, the mote needs to be 
equipped with sensors that suit the task. The 
XSM600CA intrusion detection mote by Crossbow 
Technologies is specifically designed for this 
role. This particular hardware platform has four 
Passive Infrared (PIR) sensors placed on four 
sides of the board, a magnetometer, and a 
microphone. The four PIR sensors detect the 
motion of a human within 20 feet and a vehicle 
within 40 feet. The magnetometer detects the 
movement of metallic objects and is used to discern 
between humans and vehicles. The microphone 
provides detection of acoustic triggers. 

 
5.1 Benefits of Modular Visualization Design 

By creating an extensible architecture, MOTE-
VIEW can easily be modified for vertical market 
opportunities or custom projects. One example of this is 
used with a custom version of the XSM600CA 

intrusion detection mote, which has been modified to 
add quadrant detection circuitry for discerning which 
combination of the four PIRs triggered a detection 
event. The topology view of MOTE-VIEW was 
extended to display the actual quadrants that fire in 
real-time. Also, because thermal air currents tend to 
trigger false detections on the PIRs, a simple 
aggregation algorithm was added to validate detection 
events only when a corresponding event is seen by at 
least one neighbor node within a short time window. 
False positives are depicted as hollowed out wedges, 
whereas a validated event is drawn as a solid orange 
wedge in the direction of each quadrant that fired. 

This extended topology view, customized for a 
network of XSM600 motes, is then used to monitor the 
real-time movements of humans and vehicles through a 
simulated hazardous area. The motes are placed in a 
grid, 40 feet apart within a column, with the columns 20 
feet apart and staggered so the motes are also 40 feet 
apart within a row (see Fig. 7).  MOTE-VIEW is 
running on a tablet PC and provides updated views of 
the state of the network every second. The correlation 
between the display and the real-life events is 
impressive. A car driving through the area lights up the 
display in a way that corresponds visibly with its actual 
path. 

 

 
Figure 7: MOTE-VIEW display of XSM600 sensor 
network detecting vehicle intrusion in a parking 
lot test. PIR triggers are depicted with an 
orange wedge for each quadrant, and 
magnetometer triggers are depicted with red 
node coloring.  



 
Figure 8:  IsoBar display of light data in MOTE-VIEW 
 
5.2 Heterogeneous Deployment Challenges 

The issues with increasing the density of 
deployments, which we described earlier, are 
compounded when disparate node types are deployed 
outfitted with different sensors. Therefore, it becomes 
increasingly important in managing such heterogeneous 
sensor networks that software tools handle incoming 
data in a general and intuitive way. 

By mixing nodes with disparate sets of sensors 
within the same network, several complications arise. 
First, the packet format of the various nodes cannot be 
the same. Because sensor networks use low bandwidth 
transfers, the amount of data within a data packet is 
often limited to those sensors with which a given node 
is equipped. Second, a fixed schema for the results table 
is no longer sufficient.  
 
6. Conclusion 

Managing and monitoring wireless sensor networks 
presents a variety of challenges. Modular design will be 
key to allow solutions to scale flexibly with the 
inevitable growth such networks will experience in the 
future. In conclusion, the MOTE-VIEW framework 
provides a sound basis for addressing many such 
challenges.  
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